Abstract

MDF cements using the blends of sulfoaluminate ferrite belite (SAFB) clinkers and ordinary Portland cement (OPC) in mass ratio 85:15 with Al2O3, and starch, polyphosphate (poly-P) or butylacrylate/acrylonitrile were subjected to moist atmospheres (ambient, 52 and 100% relative humidity (RH)) to investigate their moisture resistance. Their chemical, thermal, electron microscopic and magnetic properties were also studied before and after moisture attack. Butylacrylate/acrylonitrile (BA/AN) copolymer was found to be the most suitable for MDF cement synthesis since the sample containing BA/AN showed the best moisture resistant. There are significant differences in scanning electron microscopy (SEM) of MDF cements before and after moisture attack and with different polymers. New data on the paramagnetic nonhysteresis magnetization curves for all the samples are observed. The MDF cements synthesized from SAFB clinker with dissolved poly-P give the best signal/noise (S/N) ratio. Three main temperature regions on TG curves of both series of MDF cements are observed. In the inter-phase section of MDF cements, the content of classical cement hydrates decomposing by 250°C is increased. Combustion of organic material took place by 550°C. In the temperature range 550-800°C, the decomposition of CaCO3 occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.