Abstract
Ionization mechanisms of C${}_{60}$ molecules irradiated by a short intense 800-nm laser pulse are studied. Angle-resolved photoelectron spectra show above-threshold ionization (ATI) patterns with a low peak contrast and a remarkably smooth angular distribution. The results are interpreted by combining two theoretical models. A time-dependent Schr\odinger equation (TDSE) calculation based on the $B$-spline method that explicitly takes into account the molecular potential mimics the single-active-electron response while a statistical model accounts for the many-electron effects. We show that the latter are responsible for the loss of contrast in the ATI peaks. The smooth angular distribution arises in the TDSE calculation as a result of the high angular momentum of the C${}_{60}$ ground electronic state and therefore is a manifestation of the atomic behavior of the molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.