Abstract

In his famous book "Combinatory Analysis" MacMahon introduced Partition Analysis as a computational method for solving combinatorial problems in connection with systems of linear diophantine inequalities and equations. By developing the Omega package we have shown that Partition Analysis is ideally suited for being supplemented by computer algebra methods. The object of this paper is to present a significant algorithmic improvement of this package. It overcomes a problem related to the computational treatment of roots of unity. Moreover, this new reduction strategy turns out to be superior to "The Method of Elliott" which is described in MacMahon's book. In order to make this article as self-contained as possible we give a brief introduction to Partition Analysis together with a variety of illustrative examples. For instance, the generating function of magic pentagrams is computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.