Abstract

Electrochemical milling is an ideal technique for machining large-scale 3D structures that consist of aerospace aluminum alloys. The distribution of the electric and flow fields are vital to the quality of the machined surface, and the structures of the inner flow channel and bottom outlet have different effects on the electric and flow fields on the machining surface. In this study, two specialized structures of a tool cathode were optimized by simulating the electric and flow fields, and a reasonable design basis for the tool cathode was obtained. Based on this, an ECM experiment was performed with the same machining parameters using different tools, and a 20 mm × 20 mm plane was machined. The experimental results showed that using an appropriate tool cathode can create ideal flow and electric fields, resulting in better processing. After optimizing, the machining plane arithmetic mean deviation decreased by 43% (from 14.050 μm to 6.045 μm), and the region elevation difference decreased by 52% (from 105.93 μm to 55.17 μm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.