Abstract

Machining performance of monolithic alumina (Al2O3) tool inserts for metal cutting through carbon nanotube (CNT) incorporation was studied in this work. 0.3 vol% multiwalled CNT(MWCNT)-Al2O3 nanocomposite was prepared by hot-pressing at 1550°C with a dwell of 1 h under 2.5 MPa uniaxial pressure in static argon atmosphere. The hot-pressed nanocomposite achieved >99.5% of its theoretical density. The specimen also offered improved fracture toughness, KIC (~23% higher), flexural strength, σFS (~10% higher), hardness, HV1 (~7.5% higher) and thermal conductivity, κ (~30% higher) compared to those of pure Al2O3 (KIC = 5.23 MPa-m0.5, σFS = 341.01 MPa, HV1 = 18.80 GPa, κ = 23.69 W/mK). Inserts developed with this nanocomposite having 0.8 and 1 mm nose radii demonstrated successful machining during turning of AISI 4340 steel rod (hardness = 38 HRC) in dry environment under different cutting conditions and showed promising applicability in machining industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call