Abstract

Controlled orthogonal and controlled oblique machining of annealed AISI 4340 have been undertaken in a design of experiments framework to investigate the machining-induced residual stresses resulting from these processes. The experimentation demonstrates significant simplifications in the machining-induced residual stress problem when the stresses are expressed in a coordinate system fixed in the tool and also indicates that the directions along the cutting edge and normal to the cutting edge of the tool are principal directions of the machining-induced residual stresses. Based on the experimental results, a plane strain thermoelastoplastic model of metal flow under the flank of a cutting tool is developed to predict the full in-plane biaxial residual stress profiles existing at and beneath the newly created surface. Calibrated results show favorable agreement with the experimental machining-induced residual stresses in annealed AISI 4340. [S1087-1357(00)00201-X]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.