Abstract

In process planning of machined part, machining feature recognition and representation, feature-based generative process planning, and the process intermediate model generation are the key issues. While many research results have been achieved in recent years, the complete modeling of machining features, process operations, and the 3D models in process planning are still need further research to make the techniques to be applied in practical CAPP systems. In this paper, a machining feature definition and classification method is proposed for the purpose of process planning based on 3D model. Machining features are defined as the surfaces formed by a serious of machining operation. The classification scheme of machining features is proposed for the purpose of feature recognition, feature-based machining operations reasoning, and knowledge representation. Recognized from B-Rep representation of design model, machining features are represented by adjacent graph and organized by feature relations. The machining process plan is modeled as operations and steps, which is the combination and sequencing of machining feature’s process steps. The process intermediate models (PIM) are important for process documentation, analysis and NC programming. An automatic PIM generation approach is proposed using local operations directly on B-Rep model. The proposed data structure and algorithm is adopted in the development of CAPP tool on solid modeler ACIS/HOOPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call