Abstract

Although the machinability of most aluminium alloys can be classified as relatively easy when the tool wear and the cutting energy are considered, these materials could however raise some concerns when the chip formation and the burr formation are of concern. Burr formation, a phenomenon similar to chip generation, is a common problem that occurs in several industrial sectors, such as the aerospace and automobile sectors. It has also been among the most troublesome impediments to high productivity and automation, and large‐ ly affects the machined part quality. To ensure competitiveness, precise and burr-free com‐ ponents with tight tolerances and better surface finish are demanded. Intensive research conducted during the last decades has laid out the mechanisms of burr formation and de‐ burring in a very comprehensive fashion, and has introduced integrated strategies for burr prevention and minimization. Despite all the improvements realized, there are still many challenges encountered in understanding, modeling and optimizing the burr formation process and size, through production growth and cycle time reduction. Furthermore, acquir‐ ing a solid knowledge on deburring methods and the links between them and burr size is strongly recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call