Abstract

The use of materials with low specific weight is an effective way of reducing the weight of structures. Aluminum alloys are among the most commonly used lightweight metallic materials as they offer a number of different interesting mechanical and thermal properties. In addition, they are relatively easy to shape metals, especially in material removal processes, such as machining. In fact, aluminum alloys as a class are considered as the family of materials offering the highest levels of machinability, as compared to other families of lightweight metals such as titanium and magnesium alloys. This machinability quantifies the machining performance, and may be defined for a specific application by various criteria, such as tool life, surface finish, chip evacuation, material removal rate and machine-tool power. It has been shown that chemical composition, structural defects and alloying elements significantly influence machinability [W Konig et al., 1983]. Thus, with similar chemical compositions, the machinability of alloys can be improved by different treatments. Heat treatments, which increase hardness, will reduce the built-up edge (BUE) tendency during machining [M. Tash et al., 2006]. In the case of dry machining, the major problems encountered are the BUE at low cutting speeds and sticking at high cutting speeds, hence the need for special tool geometries [P. Roy et al., 2008]. It has been shown that high levels of Magnesium (Mg) increase the cutting forces at the same level of hardness [M. Tash et al., 2006], while a low percentage of Copper (Cu) in aluminum alloy 319 decreases the cutting force. Similarly, it has been found that heat treatment of 6061, especially aging, influences the forces only at low cutting speeds, while at high speeds, the influence is negligible because of the low temperature rise seen in the cutting zone [Demir H et al., 2008]. Cutting force is just one among several parameters to be considered for a full assessment of the machinability of metallic alloys, with the others being the tool life, the surface finish, the cutting energy and the chip formation mode. Aluminum alloys are classified under two classes: cast alloys and wrought alloys. Furthermore, they can be classified according to the specification of the alloying elements involved, such as strain-hardenable alloys and heat-treatable alloys. Most wrought aluminum alloys have excellent machinability. While cast alloys containing copper, magnesium or zinc as the main alloying elements can cause some machining difficulties, the use of small tool rake angles can however improve machinability. Alloys having silicon as the main alloying element involve larger tool rake angles, lower speeds and feeds, making

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call