Abstract

A machine-learning-driven approach for matrix ordering is proposed for power grid analysis based on domain decomposition. It utilizes support vector machine or artificial neural network to learn a classifier to automatically choose the optimal ordering algorithm, thereby reducing the expense of solving the subdomain equations. Based on the feature selection considering sparse matrix properties, the proposed method achieves superior efficiency in runtime and memory usage over conventional methods, as demonstrated by industrial test cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.