Abstract

Noise-induced synchronization is a pervasive phenomenon observed in a multitude of natural and engineering systems. Here, we devise a machine learning framework with the aim of devising noise controllers to achieve synchronization in diverse complex physical systems. We find the implicit energy regularization phenomenon of the formulated framework that engenders energy-saving artificial noise and we rigorously elucidate the underlying mechanism driving this phenomenon. We substantiate the practical feasibility and efficacy of this framework by testing it across various representative systems of physical and biological significance, each influenced by distinct constraints reflecting real-world scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.