Abstract
Ambient backscatter communication (AmBC) has emerged as a promising paradigm for enabling sustainable low-power operation of Internet of Things devices. This is due to its ability to enable sensing and communication through backscattering ambient wireless signals (e.g., WiFi and TV sig-nals). But a great impediment to AmBC-enabled networks is the difficulty in decoding the backscat-ter signals because the ambient signals are usually modulated and meant for other legacy receivers rather than AmBC devices. Drawing from the ability of machine learning (ML) to enhance the performance of wireless communication systems, some ML-aided techniques have been developed to assist signal detection in AmBC. Hence, this article aims to provide a comprehensive overview of the subject by describing the operation of the AmBC network, highlighting the major challenges to signal detection in AmBC, discussing and com-paring the performance of some existing ML-assisted solutions to AmBC signal detection, and highlighting some future research that could be carried out on the subject.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.