Abstract

In this study, the electronic density of states (DOSs) calculated with density functional theory (DFT) were analyzed by the machine-learning techniques. More than 400 pure metal and bimetallic alloy systems were calculated with DFT, and obtained the surface DOSs and the CH3 adsorption energy (Ead). By fitting the Gaussian functions to the DOS, multiple descriptors, such as the Gaussian peak positions, heights, and widths were extracted. Several regression methods, such as the least absolute shrinkage of selection operator (LASSO), random-forest, gradient-boosting, and extra-tree were used to find the relationship between these descriptors and the Ead. The results show that the energy position of the peaks in the d-projected DOS is the most important descriptor, in agreement with the previously known d-band center theory. It was also shown that the peak position in d-projected DOS improves the regression model in addition to the d-band center, since it reduces the regression error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.