Abstract

This paper presents a deep learning-based machine translation (MT) system that translates a sentence of subject-object-verb (SOV) structured language into subject-verb-object (SVO) structured language. This system uses recurrent neural networks (RNNs) and Encodings. Encode embedded RNNs generate a set of numbers from the input sentence, where the second RNNs generate the output from these sets of numbers. Three popular datasets of SOV structured language i.e., EMILLE corpus, Prothom-Alo corpus and Punjabi Monolingual Text Corpus ILCI-II are used as two different case-study to validate. In our experimental case-study 1, for the EMILLE corpus and Prothom-Alo corpus dataset, we have achieved 0.742, 4.11 and 0.18, respectively as Bilingual Evaluation Understudy (BLEU), NIST (metric) and tertiary entrance rank scores. Another case-study for Punjabi Monolingual Text Corpus ILCI-II dataset achieved a BLEU score of 0.75. Our results can be compared with the state-of-the-art results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.