Abstract
Inverse reinforcement learning (IRL) infers a reward function from demonstrations, allowing for policy improvement and generalization. However, despite much recent interest in IRL, little work has been done to understand the minimum set of demonstrations needed to teach a specific sequential decisionmaking task. We formalize the problem of finding maximally informative demonstrations for IRL as a machine teaching problem where the goal is to find the minimum number of demonstrations needed to specify the reward equivalence class of the demonstrator. We extend previous work on algorithmic teaching for sequential decision-making tasks by showing a reduction to the set cover problem which enables an efficient approximation algorithm for determining the set of maximallyinformative demonstrations. We apply our proposed machine teaching algorithm to two novel applications: providing a lower bound on the number of queries needed to learn a policy using active IRL and developing a novel IRL algorithm that can learn more efficiently from informative demonstrations than a standard IRL approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.