Abstract

This research showcases the machine learning (ML)-enabled homogeneous catalyst discovery to be employed in carbon dioxide hydrogenation. To achieve the desired turnover frequency (TOF), the electrophilicity of the central metal atom is a crucial factor in transition metal pincer complexes. The condensed Fukui function is a direct measure of the catalytic performance of these pincer complexes. Herein, we demonstrate that machine learning is a convenient and effiecient method to calculate condensed Fukui functions of the central metal atom. The electrophilicity values of 202 pincer complexes were calculated by using density functional theory (DFT) to train the ML model. The test data of the experimentally established pincer complexes show a direct linkage between calculated electrophilicity and experimental TOF. Further, this data was used to develop an ML protocol to screen 2,84,062 catalyst complexes to get the electrophilicity values of the Mn, Fe, Co, and Ni transition metals encompassing various permutation combinations of PNP, PNN, NNN, and PCP pincer ligands. These findings validate the efficacy of machine learning in the rapid screening of metal pincer catalysts based on condensed Fukui functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call