Abstract
Myocardial fibrosis (MF) arises due to myocardial infarction and numerous cardiac diseases. MF may lead to several heart disorders, such as heart failure, arrhythmias, and ischemia. Cardiac magnetic resonance (CMR) imaging techniques, such as late gadolinium enhancement (LGE) CMR, enable non-invasive assessment of MF in the left ventricle (LV). Manual assessment of MF on CMR is a tedious and time-consuming task that is subject to high observer variability. Automated segmentation and quantification of MF is important for risk stratification and treatment planning in patients with heart disorders. This article aims to review the machine learning (ML)-based methodologies developed for MF quantification in the LV using CMR images. With the availability of relatively large labeled datasets supervised learning methods based on both conventional ML and state-of-the-art deep learning (DL) methods have been successfully applied for automated segmentation of MF. The incorporation of ML algorithms into imaging techniques such as 3D LGE CMR permits fast characterization of MF on CMR imaging and may enhance the diagnosis and prognosis of patients with heart disorders. Concurrently, the studies using cine CMR images have revealed that accurate segmentation of MF on non-contrast CMR imaging might be possible. The application of ML/DL tools in CMR image interpretation is likely to result in accurate and efficient quantification of MF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.