Abstract

Accurate assessment of scour depth around bridge abutments is crucial to reasonable design of abutment structures. In this study, machine learning (ML) models are implemented, including M5′ model tree (M5′MT), multivariate adaptive regression spline (MARS), locally weighted polynomial regression (LWPR) and multigene genetic programming (MGGP) to predict scour depth around vertical-wall, 45° wing-wall and semicircular bridge abutments. Published experimental data are adopted, with four input parameters considered for the prediction of relative scour depth. The optimal input combination for each model is first determined using correlation and sensitivity analyses; results reveal that MGGP exhibits the best agreement with experimental data for vertical-wall and semicircular abutments, whereas LWPR outperforms the other models for the 45° wing-wall abutment. In addition, compared with the empirical equations and ML models employed in the literature, the accuracy of scour depth prediction is significantly improved with the ML models used in this study. Considering the comprehensive performance for all types of abutments in terms of accuracy, reliability and interpretability, MGGP is recommended as the representative of the implemented ML models with its mean absolute percentage error of 2.40% for a vertical-wall abutment, 3.95% for a 45° wing-wall abutment and 3.85% for a semicircular abutment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call