Abstract

The goal of this work is to evaluate if changes in brain connectivity can predict behavioral changes among subjects who have suffered stroke and have completed brain-computer interface (BCI) interventional therapy. A total of 23 stroke subjects, with persistent upper-extremity motor deficits, received the stroke rehabilitation therapy using a closed-loop neurofeedback BCI device. Over the course of the entire interventional therapy, resting-state fMRI were collected at two time points: prior to start and immediately upon completion of therapy. Behavioral assessments were administered at each time point via neuropsychological testing to collect measures on Action Research Arm Test, Nine-Hole Peg Test, Barthel Index and Stroke Impact Scale. Resting-state functional connectivity changes in the motor network were computed from pre- to post-interventional therapy and were combined with clinical data corresponding to each subject to estimate the change in behavioral performance between the two time-points using a machine learning based predictive model. Inter-hemispheric correlations emerged as stronger predictors of changes across multiple behavioral measures in comparison to intra-hemispheric links. Additionally, age predicted behavioral changes better than other clinical variables such as gender, pre-stroke handedness, etc. Machine learning model serves as a valuable tool in predicting BCI therapy-induced behavioral changes on the basis of functional connectivity and clinical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call