Abstract
Despite research efforts, predicting Clostridioides difficile incidence and its outcomes remains challenging. The aim of this systematic review was to evaluate the performance of machine learning (ML) models in predicting C. difficile infection (CDI) incidence and complications using clinical data from electronic health records. We conducted a comprehensive search of databases (OVID, Embase, MEDLINE ALL, Web of Science, and Scopus) from inception up to September 2023. Studies employing ML techniques for predicting CDI or its complications were included. The primary outcome was the type and performance of ML models assessed using the area under the receiver operating characteristic curve. Twelve retrospective studies that evaluated CDI incidence and/or outcomes were included. The most commonly used ML models were random forest and gradient boosting. The area under the receiver operating characteristic curve ranged from 0.60 to 0.81 for predicting CDI incidence, 0.59 to 0.80 for recurrence, and 0.64 to 0.88 for predicting complications. Advanced ML models demonstrated similar performance to traditional logistic regression. However, there was notable heterogeneity in defining CDI and the different outcomes, including incidence, recurrence, and complications, and a lack of external validation in most studies. ML models show promise in predicting CDI incidence and outcomes. However, the observed heterogeneity in CDI definitions and the lack of real-world validation highlight challenges in clinical implementation. Future research should focus on external validation and the use of standardized definitions across studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.