Abstract

As a natural adsorbent material, bentonite is widely used in the field of heavy metal adsorption. The heavy metal adsorption capacity of bentonite varies significantly in studies due to the differences in the properties of bentonite, solution, and heavy metal. To achieve accurate predictions of bentonite's heavy metal adsorption capacity, this study employed six machine learning (ML) regression algorithms to investigate the adsorption characteristics of bentonite. Finally, an eXtreme Gradient Boosting Regression (XGB) model with outstanding predictive performance was constructed. Explanation analysis of the XGB model further reveal the importance and influence manner of each input feature in predicting the heavy metal adsorption capacity of bentonite. The feature categories influencing heavy metal adsorption capacity were ranked in order of importance as adsorption conditions > bentonite properties > heavy metal properties. Furthermore, a web-based graphical user interface (GUI) software was developed, facilitating researchers and engineers to conveniently use the XGB model for predicting the heavy metal adsorption capacity of bentonite. This study provides new insights into the adsorption behaviors of bentonite for heavy metals, offering guidance and support for enhancing its application efficiency and addressing heavy metal pollution remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.