Abstract

Background; Heart attack prediction is one of the serious causes of morbidity in the world’s population. The clinical data analysis includes a very crucial disease i.e., cardiovascular disease as one of the most important sections for the prediction. Data Science and machine learning (ML) can be very helpful in the prediction of heart attacks in which different risk factors like high blood pressure, high cholesterol, abnormal pulse rate, diabetes, etc... can be considered. The objective of this study is to optimize the prediction of heart disease using ML. Methods: In this paper, we are presenting a machine learning-based heart attack prediction (ML-HAP) method in which the analysis of different risk factors and prediction for heart attacks is done using ML approaches of Support Vector Machines, Logistic Regression, Naïve Bayes and XGBoost. The data of heart disease symptoms has been collected from the UCI ML Repository and analysis has been performed on the data using ML methods. The focus has been on optimizing the prediction on the basis of different parameters. Results: XGBoost provided the best prediction among the four. The Area under the curve achieved with XGBoost is .94 and Logistic Regression is .92. The prediction with ML models in identifying heart attack symptoms is highly efficient, especially with boosting algorithms. The prediction was done to evaluate accuracy, precision, recall, and area under the curve. ML models are being trained to perform optimized predictions. Conclusions: This prediction can help clinically in analyzing the risk factors of the disease and interpretation of the patient scenario. Boosting the algorithm provided promising results to predict symptoms of heart disease. It can further be optimized by working further on risk factors associated with this condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call