Abstract
Studies on eye movements found that children with autism spectrum disorder (ASD) had abnormal gaze behavior to social stimuli. The current study aimed to investigate whether their eye movement patterns in relation to cartoon characters or real people could be useful in identifying ASD children. Eye-tracking tests based on videos of cartoon characters and real people were performed for ASD and typically developing (TD) children aged between 12 and 60 months. A three-level hierarchical structure including participants, events, and areas of interest was used to arrange the data obtained from eye-tracking tests. Random forest was adopted as the feature selection tool and classifier, and the flattened vectors and diagnostic information were used as features and labels. A logistic regression was used to evaluate the impact of the most important features. A total of 161 children (117 ASD and 44 TD) with a mean age of 39.70 ± 12.27 months were recruited. The overall accuracy, precision, and recall of the model were 0.73, 0.73, and 0.75, respectively. Attention to human-related elements was positively related to the diagnosis of ASD, while fixation time for cartoons was negatively related to the diagnosis. Using eye-tracking techniques with machine learning algorithms might be promising for identifying ASD. The value of artificial faces, such as cartoon characters, in the field of ASD diagnosis and intervention is worth further exploring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.