Abstract

BackgroundCurrent risk stratification strategies for patients with hypertrophic cardiomyopathy (HCM) are limited to traditional methodologies. ObjectivesThe authors aimed to establish machine learning (ML)-based models to discriminate major cardiovascular events in patients with HCM. MethodsWe enrolled consecutive HCM patients from 2 tertiary referral centers and used 25 clinical and echocardiographic features to discriminate major adverse cardiovascular events (MACE), including all-cause death, admission for heart failure (HF-adm), and stroke. The best model was selected for each outcome using the area under the receiver operating characteristic curve (AUROC) with 20-fold cross-validation. After testing in the external validation cohort, the relative importance of features in discriminating each outcome was determined using the SHapley Additive exPlanations (SHAP) method. ResultsIn total, 2,111 patients with HCM (age 61.4 ± 13.6 years; 67.6% men) were analyzed. During the median 4.0 years of follow-up, MACE occurred in 341 patients (16.2%). Among the 4 ML models, the logistic regression model achieved the best AUROC of 0.800 (95% CI: 0.760-0.841) for MACE, 0.789 (95% CI: 0.736-0.841) for all-cause death, 0.798 (95% CI: 0.736-0.860) for HF-adm, and 0.807 (95% CI: 0.754-0.859) for stroke. The discriminant ability of the logistic regression model remained excellent when applied to the external validation cohort for MACE (AUROC = 0.768), all-cause death (AUROC = 0.750), and HF-adm (AUROC = 0.806). The SHAP analysis identified left atrial diameter and hypertension as important variables for all outcomes of interest. ConclusionsThe proposed ML models incorporating various phenotypes from patients with HCM accurately discriminated adverse cardiovascular events and provided variables with high importance for each outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call