Abstract
The aim of the work described here was to assess the application of ultrasound (US) radiomics with machine learning (ML) classifiers to the prediction of axillary sentinel lymph node metastasis (SLNM) burden in early-stage invasive breast cancer (IBC). In this study, 278 early-stage IBC patients with at least one SLNM (195 in the training set and 83 in the test set) were studied at our institution. Pathologic SLNM burden was used as the reference standard. The US radiomics features of breast tumors were extracted by using 3D-Slicer and PyRadiomics software. Four ML classifiers-linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF) and decision tree (DT)-were used to construct radiomics models for the prediction of SLNM burden. The combined clinicopathologic-radiomics models were also assessed with respect to sensitivity, specificity, accuracy and areas under the curve (AUCs). Among the US radiomics models, the SVM classifier achieved better predictive performance with an AUC of 0.920 compared with RF (AUC = 0.874), LDA (AUC = 0.835) and DT (AUC = 0.800) in the test set. The clinicopathologic model had low efficacy, with AUCs of 0.678 and 0.710 in the training and test sets, respectively. The combined clinicopathologic (C) factors and SVM classifier (C + SVM) model improved the predictive ability with an AUC of 0.934, sensitivity of 86.7%, specificity of 89.9% and accuracy of 91.0% in the test set. ML-based US radiomics analysis, as a novel and promising predictive tool, is conducive to a precise clinical treatment strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.