Abstract
Abstract In this dissertation, a novel class of model structures and associated training algorithms for building data-driven nonlinear state space models is developed. The new identification procedure with the resulting model is called local model state space network (LMSSN). Furthermore, recurrent neural networks (RNNs) and their similarities to nonlinear state space models are elaborated on. The overall outstanding performance of the LMSSN is demonstrated on various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.