Abstract

Perovskite photovoltaics (PV) have achieved rapid development in the past decade in terms of power conversion efficiency of small-area lab-scale devices; however, successful commercialization still requires further development of low-cost, scalable, and high-throughput manufacturing techniques. One of the key challenges to the development of a new fabrication technique is the high-dimensional parameter space, and machine learning (ML) can be used to accelerate perovskite PV scaling. Here, we present an ML-guided framework of sequential learning for manufacturing process optimization. We apply our methodology to the Rapid Spray Plasma Processing (RSPP) technique for perovskite thin films in ambient conditions. With a limited experimental budget of screening 100 conditions process conditions, we demonstrated an efficiency improvement to 18.5% for the best device, and we also experimentally found 10 unique conditions to produce the top-performing devices of more than 17% efficiency, which is 5 times higher rate of success than pseudo-random Latin hypercube sampling. Our model is enabled by three innovations: (a) flexible knowledge transfer between experimental processes by incorporating data from prior experimental data as a soft constraint; (b) incorporation of both subjective human observations and ML insights when selecting next experiments; (c) adaptive strategy of locating the region of interest using Bayesian optimization first, and then conducting local exploration for high-efficiency devices. Furthermore, in virtual benchmarking, our framework achieves faster improvements with limited experimental budgets than traditional design-of-experiments methods ( e.g ., one-variable-at-a-time sampling). This framework is shown to enable researchers’ domain knowledge in the ML-guided optimization loop; therefore, it has the potential to facilitate the wider adoption of ML in scaling to perovskite PV manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call