Abstract
Privacy and security challenges in Machine Learning (ML) have become increasingly severe, along with ML’s pervasive development and the recent demonstration of large attack surfaces. As a mature system-oriented approach, Confidential Computing has been utilized in both academia and industry to mitigate privacy and security issues in various ML scenarios. In this paper, the conjunction between ML and Confidential Computing is investigated. We systematize the prior work on Confidential Computing-assisted ML techniques that provide i ) confidentiality guarantees and ii ) integrity assurances , and discuss their advanced features and drawbacks. Key challenges are further identified, and we provide dedicated analyses of the limitations in existing Trusted Execution Environment (TEE) systems for ML use cases. Finally, prospective works are discussed, including grounded privacy definitions for closed-loop protection, partitioned executions of efficient ML, dedicated TEE-assisted designs for ML, TEE-aware ML, and ML full pipeline guarantees. By providing these potential solutions in our systematization of knowledge, we aim to build the bridge to help achieve a much stronger TEE-enabled ML for privacy guarantees without introducing computation and system costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.