Abstract

Since the mid-1980s, there has been little progress in improving survival of patients diagnosed with osteosarcoma. Survival prediction models play a key role in clinical decision-making, guiding healthcare professionals in tailoring treatment strategies based on individual patient risks. The increasing interest of the medical community in using machine learning (ML) for predicting survival has sparked an ongoing debate on the value of ML techniques versus more traditional statistical modelling (SM) approaches. This study investigates the use of SM versus ML methods in predicting overall survival (OS) using osteosarcoma data from the EURAMOS-1 clinical trial (NCT00134030). The well-established Cox proportional hazard model is compared to the extended Cox model that includes time-varying effects, and to the ML methods random survival forests and survival neural networks. The impact of eight variables on OS predictions is explored. Results are compared on different model performance metrics, variable importance, and patient-specific predictions. The article provides comprehensive insights to aid healthcare researchers in evaluating diverse survival prediction models for low-dimensional clinical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.