Abstract
Precise monitoring of nitrite from real samples has gained significant attention due to its detrimental impact on human health. Herein, we have fabricated poly(3,4-ethylenedioxythiophene) functionalized carbon matrix suspended Cu nanoparticles (PEDOT-C@Cu-NPs) through a facile green synthesis approach. Additionally, we have used machine learning (ML) to optimize experimental parameters such as pH, drying time, and concentrations to predict current of the designed electrochemical sensor. The ML optimized concentration of fabricated C@Cu-NPs was further functionalized by PEDOT (π-electron mediator). The designed PEDOT functionalized C@Cu-NPs (PEDOT-C@Cu-NPs) electrode has shown excellent electro-oxidation capability towards NO2− ions due to highly exposed Cu facets, defects rich graphitic C and high π-electron density. Additionally, the designed material has shown low detection limit (3.91 μM), high sensitivity (0.6372 μA/μM/cm2), and wide linear range (5–580 μM). Additionally, the designed electrode has shown higher electrochemical sensing efficacy against real time monitoring from pickled vegetables extract.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.