Abstract

Practitioners in pediatric feeding programs often rely on single-case experimental designs and visual inspection to make treatment decisions (e.g., whether to change or keep a treatment in place). However, researchers have shown that this practice remains subjective, and there is no consensus yet on the best approach to support visual inspection results. To address this issue, we present the first application of a pediatric feeding treatment evaluation using machine learning to analyze treatment effects. A 5-year-old male with autism spectrum disorder participated in a 2-week home-based, behavior-analytic treatment program. We compared interrater agreement between machine learning and expert visual analysts on the effects of a pediatric feeding treatment within a modified reversal design. Both the visual analyst and the machine learning model generally agreed about the effectiveness of the treatment while overall agreement remained high. Overall, the results suggest that machine learning may provide additional support for the analysis of single-case experimental designs implemented in pediatric feeding treatment evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.