Abstract
IntroductionWe compared the diagnostic performance of morphological methods such as the major axis, the minor axis, the volume and sphericity and of machine learning with texture analysis in the identification of lymph node metastasis in patients with thyroid cancer who had undergone contrast-enhanced CT studies. MethodsWe sampled 772 lymph nodes with histology defined tissue types (84 metastatic and 688 benign lymph nodes) that were visualised on CT images of 117 patients. A support vector machine (SVM), free programming software (Python), and the scikit-learn machine learning library were used to discriminate metastatic-from benign lymph nodes. We assessed 96 texture and 4 morphological features (major axis, minor axis, volume, sphericity) that were reported useful for the differentiation between metastatic and benign lymph nodes on CT images. The area under the curve (AUC) obtained by receiver operating characteristic analysis of univariate logistic regression and SVM classifiers were calculated for the training and testing datasets. ResultsThe AUC for all classifiers in training and testing datasets was 0.96 and 0.86, at the SVM for machine learning. When we applied conventional methods to the training and testing datasets, the AUCs were 0.63 and 0.48 for the major axis, 0.70 and 0.44 for the minor axis, 0.66 and 0.43 for the volume, and 0.69 and 0.54 for sphericity, respectively. The SVM using texture features yielded significantly higher AUCs than univariate logistic regression models using morphological features (p = 0.001). ConclusionFor the identification of metastatic lymph nodes from thyroid cancer on contrast-enhanced CT images, machine learning combined with texture analysis was superior to conventional diagnostic methods with the morphological parameters. Implications for practiceOur findings suggest that in patients with thyroid cancer and suspected lymph node metastasis who undergo contrast-enhanced CT studies, machine learning using texture analysis is high diagnostic value for the identification of metastatic lymph nodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.