Abstract

Drug-induced liver injury (DILI) is a major cause of drug development failure and drug withdrawal from the market after approval. The identification of human risk factors associated with susceptibility to DILI is of paramount importance. Increasing evidence suggests that genetic variants may lead to inter-individual differences in drug response; however, individual single-nucleotide polymorphisms (SNPs) usually have limited power to predict human phenotypes such as DILI. In this study, we aim to identify appropriate statistical methods to investigate gene–gene and/or gene–environment interactions that impact DILI susceptibility. Three machine learning approaches, including Multivariate Adaptive Regression Splines (MARS), Multifactor Dimensionality Reduction (MDR), and logistic regression, were used. The simulation study suggested that all three methods were robust and could identify the known SNP–SNP interaction when up to 4% of genotypes were randomly permutated. When applied to a real-life DILI chronicity dataset, both MARS and MDR, but not logistic regression, identified combined genetic variants having better associations with DILI chronicity in comparison to the use of individual SNPs. Furthermore, a simple decision tree model using the SNPs identified by MARS and MDR was developed to predict DILI chronicity, with fair performance. Our study suggests that machine learning approaches may help identify gene–gene interactions as potential risk factors for better assessing complicated diseases such as DILI chronicity.

Highlights

  • As the primary organ responsible for metabolism, the liver is vulnerable to injury caused by drugs and drug metabolites [1,2]

  • Many efforts have focused on the genetic risk factors of Drug-induced liver injury (DILI), and several genetic variants such as single-nucleotide polymorphism (SNP) and insertion/deletion have been identified as risk factors associated with the use of specific drugs [13,14,15,16]

  • All of the three methods were robust when tested in the simulation dataset with permutation analysis. When we applied these methods to the real-world DILI chronicity dataset, Multivariate Adaptive Regression Splines (MARS) and Multifactor Dimensionality Reduction (MDR) identified SNP–SNP interactions that showed improved performance regarding the association with DILI chronicity as compared to their individual SNP counterparts

Read more

Summary

Introduction

As the primary organ responsible for metabolism, the liver is vulnerable to injury caused by drugs and drug metabolites [1,2]. Drug-induced liver injury (DILI) is one of the main reasons for halting drug development processes [3], and has caused over 50 approved drugs to be withdrawn from the market [4,5]. Genetic factors have attracted increasing attention, and recent studies have shown that genetic variants in drug-metabolizing enzymes and human leukocyte antigen (HLA) were associated with the occurrence of DILI [10,11,12]. Many efforts have focused on the genetic risk factors of DILI, and several genetic variants such as single-nucleotide polymorphism (SNP) and insertion/deletion have been identified as risk factors associated with the use of specific drugs [13,14,15,16]. The association of liver injury caused by specific drugs or groups of drugs with polymorphisms

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call