Abstract
Uterine leiomyomas with high signal intensity on T2-weighted imaging (T2WI) can be difficult to distinguish from sarcomas. This study assessed the feasibility of using machine learning to differentiate uterine sarcomas from leiomyomas with high signal intensity on T2WI on multiparametric magnetic resonance imaging. This retrospective study included 80 patients (50 with benign leiomyoma and 30 with uterine sarcoma) who underwent pelvic 3 T magnetic resonance imaging examination for the evaluation of uterine myometrial smooth muscle masses with high signal intensity on T2WI. We used six machine learning techniques to develop prediction models based on 12 texture parameters on T1WI and T2WI, apparent diffusion coefficient maps, and contrast-enhanced T1WI, as well as tumor size and age. We calculated the areas under the curve (AUCs) using receiver-operating characteristic analysis for each model by 10-fold cross-validation and compared these to those for two board-certified radiologists. The eXtreme Gradient Boosting model gave the highest AUC (0.93), followed by the random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and logistic regression models. Age was the most important factor for differentiation (leiomyoma 44.9 ± 11.1 years; sarcoma 58.9 ± 14.7 years; p < 0.001). The AUC for the eXtreme Gradient Boosting was significantly higher than those for both radiologists (0.93 vs 0.80 and 0.68, p = 0.03 and p < 0.001, respectively). Machine learning outperformed experienced radiologists in the differentiation of uterine sarcomas from leiomyomas with high signal intensity on T2WI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.