Abstract

Fetal hypoxia can cause damaging consequences on babies' such as stillbirth and cerebral palsy. Cardiotocography (CTG) has been used to detect intrapartum fetal hypoxia during labor. It is a non-invasive machine that measures the fetal heart rate and uterine contractions. Visual CTG suffers inconsistencies in interpretations among clinicians that can delay interventions. Machine learning (ML) showed potential in classifying abnormal CTG, allowing automatic interpretation. In the absence of a gold standard, researchers used various surrogate biomarkers to classify CTG, where some were clinically irrelevant. We proposed using Apgar scores as the surrogate benchmark of babies' ability to recover from birth. Apgar scores measure newborns' ability to recover from active uterine contraction, which measures appearance, pulse, grimace, activity and respiration. The higher the Apgar score, the healthier the baby is.We employ signal processing methods to pre-process and extract validated features of 552 raw CTG. We also included CTG-specific characteristics as outlined in the NICE guidelines. We employed ML techniques using 22 features and measured performances between ML classifiers. While we found that ML can distinguish CTG with low Apgar scores, results for the lowest Apgar scores, which are rare in the dataset we used, would benefit from more CTG data for better performance. We need an external dataset to validate our model for generalizability to ensure that it does not overfit a specific population.Clinical Relevance- This study demonstrated the potential of using a clinically relevant benchmark for classifying CTG to allow automatic early detection of hypoxia to reduce decision-making time in maternity units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call