Abstract

Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes. We present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies. These results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced.

Highlights

  • Nitrogen is an essential nutrient for all life forms

  • We present a machine learning approach where the identification of putative Nitrogen catabolite repression (NCR) genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem

  • Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes

Read more

Summary

Introduction

The yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. All known nitrogen catabolite pathways are regulated by four regulators. The emergence of cells able to transport, catabolize and synthesize a wide variety of nitrogenous compounds has been favored by evolutionary selective pressure [1]. Yeast transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism [1,2]. NCR inhibits the transcriptional activation systems of genes needed to degrade poor nitrogen sources [2]. All known nitrogen catabolite pathways are regulated by four regulators (Gln, Gat, Dal, and Deh1) [3]. The ultimate goal is to infer the complete nitrogen catabolite pathways

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call