Abstract

BackgroundInterest in models for calculating the risk of death in traumatic patients admitted to ICUs remains high. These models use variables derived from the deviation of physiological parameters and/or the severity of anatomical lesions with respect to the affected body areas. Our objective is to create different predictive models of the mortality of critically traumatic patients using machine learning techniques.MethodsWe used 9625 records from the RETRAUCI database (National Trauma Registry of 52 Spanish ICUs in the period of 2015–2019). Hospital mortality was 12.6%. Data on demographic variables, affected anatomical areas and physiological repercussions were used. The Weka Platform was used, along with a ten-fold cross-validation for the construction of nine supervised algorithms: logistic regression binary (LR), neural network (NN), sequential minimal optimization (SMO), classification rules (JRip), classification trees (CT), Bayesian networks (BN), adaptive boosting (ADABOOST), bootstrap aggregating (BAGGING) and random forest (RFOREST). The performance of the models was evaluated by accuracy, specificity, precision, recall, F-measure, and AUC.ResultsIn all algorithms, the most important factors are those associated with traumatic brain injury (TBI) and organic failures. The LR finds thorax and limb injuries as independent protective factors of mortality. The CT generates 24 decision rules and uses those related to TBI as the first variables (range 2.0–81.6%). The JRip detects the eight rules with the highest risk of mortality (65.0–94.1%). The NN model uses a hidden layer of ten nodes, which requires 200 weights for its interpretation. The BN find the relationships between the different factors that identify different patient profiles. Models with the ensemble methodology (ADABOOST, BAGGING and RandomForest) do not have greater performance. All models obtain high values ​​in accuracy, specificity, and AUC, but obtain lower values ​​in recall. The greatest precision is achieved by the SMO model, and the BN obtains the best recall, F-measure, and AUC.ConclusionMachine learning techniques are useful for creating mortality classification models in critically traumatic patients. With clinical interpretation, the algorithms establish different patient profiles according to the relationship between the variables used, determine groups of patients with different evolutions, and alert clinicians to the presence of rules that indicate the greatest severity.

Highlights

  • Interest in models for calculating the risk of death in traumatic patients admitted to Intensive Care Unit (ICU) remains high

  • Machine learning techniques are useful for creating mortality classification models in critically traumatic patients

  • One approach consists of using physiological variables, which can define organic failures, which indicate a greater risk if their values are far from the levels defined as normality; and another approximation determines the severity according to the graduation of the anatomical lesions produced in the different body areas [1]

Read more

Summary

Introduction

Interest in models for calculating the risk of death in traumatic patients admitted to ICUs remains high. These models use variables derived from the deviation of physiological parameters and/or the severity of anatomical lesions with respect to the affected body areas. Models for calculating the risk of death are used to assess the severity of the condition of traumatic patients. One approach consists of using physiological variables, which can define organic failures, which indicate a greater risk if their values are far from the levels defined as normality; and another approximation determines the severity according to the graduation of the anatomical lesions produced in the different body areas [1]. The physiological impact is assessed at the neurological, hemodynamic, and respiratory levels according to the Triage-Revised Trauma Score (T-RTS) [4]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.