Abstract

Machine learning (ML) is effective to establish the complicated trilateral relationship among structures, properties, and photovoltaic performance, which is fundamental issue in developing novel materials for improving power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, we constructed the database of 397 donor–acceptor pairs of OSCs with photovoltaic parameters and descriptor sets, which include donor–acceptor weight ratio within the active layer of the OSCs, root mean square of roughness, and 1024-bit Morgan molecular fingerprint for donor (Fp-D) and acceptor (Fp-A). The ML models random forest (RF), adaptive boosting (AdaBoost), extra trees regression, and gradient boosting regression trees were trained based on the descriptor set. The metrics determination coefficient (R2), Pearson correlation coefficient (r), root mean square error, and mean absolute error were selected to evaluate ML model performances. The results showed that the RF model exhibits the highest accuracy and stability for PCE prediction among these four ML models. Moreover, based on the decomposition of non-fullerene acceptors L8-BO, BTP-ec9, AQx-2, and IEICO, 20 acceptor molecules with symmetric A–D–A and A–π–D–π–A architectures were designed. The photovoltaic parameters of the designed acceptors were predicted using the trained RF model, and the virtual screening of designed acceptors was conducted based on the predicted PCE. The results indicate that six designed acceptors can reach the predicted PCE higher than 12% when P3HT was adopted as a donor. While PM6 was applied as a donor, five designed acceptors can achieve the predicted PCE higher than 16%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.