Abstract

The machine learning of potential energy surfaces (PESs) has undergone rapid progress in recent years. The vast majority of this work, however, has been focused on the learning of ground state PESs. To reliably extend machine learning protocols to excited state PESs, the occurrence of seams of conical intersections between adiabatic electronic states must be correctly accounted for. This introduces a serious problem, for at such points, the adiabatic potentials are not differentiable to any order, complicating the application of standard machine learning methods. We show that this issue may be overcome by instead learning the coordinate-dependent coefficients of the characteristic polynomial of a simple decomposition of the potential matrix. We demonstrate that, through this approach, quantitatively accurate machine learning models of seams of conical intersection may be constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.