Abstract

Ongoing anthropogenic carbon dioxide (CO2) emissions to the atmosphere cause severe air pollution that leads to complex changes in the climate, which pose threats to human life and ecosystems more generally. Geological CO2 storage (GCS) offers a promising solution to overcome this critical environmental issue by removing some of the CO2 emissions. The performance of GCS projects depends directly on the solubility and residual trapping efficiency of CO2 in a saline aquifer. This study models the solubility trapping index (STI) and residual trapping index (RTI) of CO2 in saline aquifers by applying four robust machine learning (ML) and deep learning (DL) algorithms. Extreme learning machine (ELM), least square support vector machine (LSSVM), general regression neural network (GRNN), and convolutional neural network (CNN) are applied to 6811 compiled simulation records from published studies to provide accurate STI and RTI predictions. Employing different statistical error metrics coupled with supplementary evaluations, involving score and robustness analyses, the prediction accuracy of the models proposed is comparatively assessed. The findings of the study revealed that the LSSVM model delivers the lowest RMSE values: 0.0043 (STI) and 0.0105 (RTI) with few outlying predictions. Presenting the highest STI and RTI prediction scores the LSSVM is distinguished as the most credible model among all the four models studied. The models consider eight input variables, of which the time elapsed and injection rate displays the strongest correlations with STI and RTI, respectively. The results suggest that the proposed LSSVM model is best suited for monitoring CO2 sequestration efficiency from the data variables considered. Applying such models avoids time-consuming complex simulations and offers the potential to generate fast and reliable assessments of GCS project feasibility. Accurate modeling of CO2 storage trapping indexes guarantees successful geological CO2 storage operation, which is, in fact, the cornerstone of properly controlling and managing environmentally polluting gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.