Abstract

Perovskite oxides have been of high-interest and relatively well studied over the last 20 years due to their various applications, specifically for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). One of the key properties for a perovskite to perform well as a component in SOFCs, SOECs, and other high-temperature applications is its thermal expansion coefficient (TEC). The use of machine learning (ML) to predict material properties has greatly increased over the years and has proven to be a very useful tool for materials screening. The process of synthesizing and testing perovskite oxides is laborious and costly, and the use of physics-based models is often highly computationally expensive. Due to the amount of elements able to be accommodated in the ABO3 structure and the ability for crystallographic mixing in both the A and B-sites, there are a massive amount of possible ABO3 perovskites. In this paper, a ML model for the prediction of the TECs of AA'BB'O3 perovskites is produced and applied to millions of potential compositions resulting in reliable TEC predictions for 150 451 of the compositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.