Abstract
Different machine learning (ML) methods were explored for the prediction of self-diffusion in Lennard-Jones (LJ) fluids. Using a database of diffusion constants obtained from the molecular dynamics simulation literature, multiple Random Forest (RF) and Artificial Neural Net (ANN) regression models were developed and characterized. The role and improved performance of feature engineering coupled to the RF model development was also addressed. The performance of these different ML models was evaluated by comparing the prediction error to an existing empirical relationship used to describe LJ fluid diffusion. It was found that the ANN regression models provided superior prediction of diffusion in comparison to the existing empirical relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.