Abstract

This work aims to develop a prediction model for the contents of oxygenated components in bio-oil based on machine learning according to different pyrolysis conditions and biomass characteristics. The prediction model was constructed using the extreme gradient boosting (XGB) method, and the prediction accuracy was evaluated using the test dataset. The partial dependence analysis (PDA) method was used to derive the pattern of influence of each input feature individually or in combination on the output variable. The results show that the prediction models constructed from biomass ultimate analysis and pyrolysis conditions can predict the contents of oxygenated components in bio-oil more accurately than the models constructed from biomass proximate analysis. Moderate C and O contents, higher H content of biomass, lower flow rate, and higher pyrolysis temperature can improve bio-oil quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.