Abstract

In this work, a study was conducted to investigate the effects of different biodiesel blends with hydrogen peroxide additive on the performance and emissions of an internal combustion engine under various operating parameters. A CI engine was operated with diesel, four dissimilar biodiesels, and H2O2 at various proportions. The biodiesel blends used were Jatropha (D60JB30A10, D60JB34A6, D60JB38A2, D60JB40), Honge (D60HB30A10, D60HB34A6, D60HB38A2, D60HB40), Simarouba (D60SB30A10, D60SB34A6, D60SB38A2, D60SB40), and Neem (D60NB30A10, D60NB34A6, D60NB38A2, D60NB40). The engine was tested at different injection operating pressures (200, 205, and 210 bar), a speed of 1500 rpm, and a CR of 17.5:1. From the experiments conducted, it was highlighted that, under specific conditions, i.e., with an injection pressure of 205 bar, 80% load, a compression ratio of 17.5, an injection timing set at 230 before top dead center, and an engine speed of 1500 rpm, the biodiesel blends D60JB30A10, D60HB30A10, D60SB30A10, and D60NB30A10 achieved the highest brake thermal efficiencies of 24%, 23.9675%, 23.935%, and 23.9025%, respectively. Notably, the blend D60JB30A10 stood out with the highest brake thermal efficiency of 24% among these tested blends. Similarly, when evaluating emissions under the same operational conditions, the D60JB30A10 blend exhibited the lowest emissions levels: CO (0.16% Vol), CO2 (7.8% Vol), HC (59 PPM), and Smoke (60 HSU), while NOx (720 PPM) emissions showed a relative increase with higher concentrations of the hydrogen-based additive. The D60HB30A10, D60SB30A10, and D60NB30A10 blends showed higher emissions in comparison. Additionally, the study suggests that machine learning techniques can be employed to predict engine performance and emission characteristics, thereby cutting down on time and costs associated with traditional engine trials. Specifically, machine learning methods, like XG Boost, random forest regressor, decision tree regressor, and linear regression, were utilized for prediction purposes. Among these techniques, the XG Boost model demonstrated highly accurate predictions, followed by the random forest regressor, decision tree regressor, and linear regression models. The accuracy of the predictions for XG Boost model was assessed through evaluation metrics such as R2-Score (0.999), Root Mean Squared Error (0.540), Mean Squared Error (0.248), and Mean Absolute Error (0.292), which allowed for a thorough analysis of the algorithm’s performance compared to actual values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call