Abstract
Quantum dots (QDs) have attracted much attention and exhibit many attractive properties, including high absorption coefficient, adjustable bandgap, high brightness, long-term stability, and size-dependent emission. It is known that to obtain high-quality luminescent properties (i.e. emission color, color purity, quantum yield, and stability), the synthesis parameters must be precisely controlled. In this work, we have constructed a database with CdTe aqueous synthesis parameters and spectroscopic results and applied machine learning algorithms to better understand the influence of the main synthesis parameters of CdTe QDs on their final emission properties. A strong dependence of the final emission wavelength with the reaction time and surface ligands and precursors concentrations was demonstrated. These parameters adjusted synchronously were shown to be very useful for provide ideal synthesis conditions for the preparation of CdTe QDs with desirable emission wavelengths. Moreover, applying the algorithms correctly allows for obtaining information and insights into the growth kinetics of QDs under different synthetic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.