Abstract

A machine learning (ML) potential for Au clusters is developed through training on a dataset including several different sized clusters. This ML potential accurately covers the whole configuration space of Au clusters in a broad size range, thus expressing a good performance in search of their global minimum energy structures. Based on our potential, the low-lying structures of 17 different sized Au clusters are identified, which shows that small sized Au clusters tend to form planar structures while large ones are more likely to be stereo, revealing the critical size for the two-dimensional (2D) to three-dimensional (3D) structural transition. Our calculations demonstrate that ML is indeed powerful in describing the interaction of Au atoms and provides a new paradigm on accelerating the search of structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.