Abstract

We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law exhibits a square wave with two alternating duty cycles. The forced flow presents a 2.5 times increase in the fluctuation energy undergoing early multiple vortex-pairing. The best stabilization control law tames the mixing layer into pure Kelvin–Helmholtz vortices without following vortex-pairing. The 23% reduction of fluctuation energy is achieved under the dual high-frequency actuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.