Abstract

Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment. There are few, if any, computational methods for variants comparable to biological activity predictions. To address this gap, we developed a machine learning method that uses protein three-dimensional structures from AlphaFold to predict how a variant will influence changes to a gene's downstream biological pathways. We trained state-of-the-art machine learning classifiers to predict which protein regions will most likely impact transcriptional activities of two proto-oncogenes, nuclear factor erythroid 2 (NFE2L2)-related factor 2 (NRF2) and c-Myc. We have identified classifiers that attain accuracies higher than 80%, which have allowed us to identify a set of key protein regions that lead to significant perturbations in c-Myc or NRF2 transcriptional pathway activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.