Abstract

In the present work we use maximum entropy methods to derive several theorems in probabilistic number theory, including a version of the Hardy-Ramanujan Theorem. We also provide a theoretical argument explaining the experimental observations of Y.-H. He about the learnability of primes, and posit that the Erdős-Kac law would very unlikely be discovered by current machine learning techniques. Numerical experiments that we perform corroborate our theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.