Abstract
Pancreatic ductal adenocarcinoma is an intractable disease with frequent recurrence after resection and adjuvant therapy. The present study aimed to clarify whether artificial intelligence-assisted analysis of histopathological images can predict recurrence in patients with pancreatic ductal adenocarcinoma who underwent resection and adjuvant chemotherapy with tegafur/5-chloro-2,4-dihydroxypyridine/potassium oxonate. Eighty-nine patients were enrolled in the study. Machine-learning algorithms were applied to 10-billion-scale pixel data of whole-slide histopathological images to generate key features using multiple deep autoencoders. Areas under the curve were calculated from receiver operating characteristic curves using a support vector machine with key features alone and by combining with clinical data (age and carbohydrate antigen 19-9 and carcinoembryonic antigen levels) for predicting recurrence. Supervised learning with pathological annotations was conducted to determine the significant features for predicting recurrence. Areas under the curves obtained were 0.73 (95% confidence interval, 0.59-0.87) by the histopathological data analysis and 0.84 (95% confidence interval, 0.73-0.94) by the combinatorial analysis of histopathological data and clinical data. Supervised learning model demonstrated that poor tumor differentiation was significantly associated with recurrence. Results indicate that machine learning with the integration of artificial intelligence-driven evaluation of histopathological images and conventional clinical data provides relevant prognostic information for patients with pancreatic ductal adenocarcinoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.